5.1 Using Fundamental Identities
The Identities can be found on the following web site:
http://www.sosmath.com/trig/Trig5/trig5/trig5.html
Reciprocal identities
Pythagorean Identities
Quotient Identities
Co-Function Identities
Even-Odd Identities
Example 1: Evaluate the trigonometric functions given
Tan x = 7/24 and sec x is negative
Tan x is positive in the I and III quadrant
Sec x is negative in the II and III quadrant
Therefore this can be evaluated by knowing we are in the III quadrant
72 + 242 = c2
49 + 576 = c2
625 = c2
25 = c
Therefore:
Sin x = -7/25
Csc x = -25/7
Cos x = -24/25
Sec x = -25/24
Tan x = 7/24
Cot x = 24/7
Example 2: Simplify
cot x sec x
((cos x)/ (sin x) ) (1/ cos x)
1/ sin x
Csc x
Example 3:
(Cos2y) / (1 – sin y)
(1 – sin2y)/ (1 – sin y)
(1 + sin y)(1 – sin y)/ (1 – sin y)
1 + sin y
Example 4:
(tan2θ)/ (sec2 θ)
(sin2 θ)/(cos2 θ) ÷ (1 / (cos2)
(sin2 θ)/(cos2 θ) × (cos2)/1
sin2 θ
Example 5: Verify
Cos θ sec θ – cos2 θ = sin2 θ
Cos θ (1/ cos θ) - cos2 θ = sin2 θ
1 – cos2 θ = sin2 θ
sin2 θ = sin2 θ
Example 6: verify
(sec2 θ - tan2 θ + tan θ)/ (sec θ) = cos θ + sin θ
(1 + tan2 θ – tan2 θ + tan θ)/(sec θ) = cos θ + sin θ
(1 + tan θ)/ sec θ = cos θ + sin θ
1/sec θ + tan θ / sec θ = cos θ + sin θ
cos θ + (sin θ / cos θ) / (1/ cos θ) = cos θ + sin θ
cos θ + sin θ = cos θ + sin θ
Example 7: Factor
sec2x tan2x + sec2
sec2x ( tan2x + 1)
sec2x (sec2x)
sec4x
5.1 Homework: #43; pg. 381; # 5, 7, 25, 27, 37 – 43 odd, 55 – 59 odd, 67 – 77 odd, 91, 93, 101, 103