3.3 Properties of Logarithms
Change of Base:
Let a, b, and x be positive real numbers such that a≠1 and b≠1. Then logax can be converted to a different base using any of the following formulas.
Base b
logax=(logbx)/(logba)
Base 10
logax=(log10x)/(log10a)
Base e
logax = (ln x)/(ln a)
Examples:
log74 = .7124143742
log151460 = 2.690567447
log(1/3)(0.015)=3.822736302
Properties of Logarithms:
Let a be a positive number such that a≠1, and let n be a real number. If u and v are positive real numbers, the following properties are true.
1. loga(uv) = logau + logav
2. ln(uv) = ln u + ln v
3. loga (u/v) = logau - logav
4. ln (u/v) = ln u - ln v
5. logaun = n log au
6. ln un = n ln u
Examples: Expand or condense:
1. ln (x4 y½)/(y2z3) = 4ln x + 1/2 ln y - 2 ln y - 3 ln z = 4 ln x - 3/2 ln y - 3 ln z
2. ln (x4(x2+1))¼= (1/4)( 4 ln x + ln (x2 + 1))
3. 4(lnz + ln(z+5)) - 2ln(z-5) + 3ln(x-2) =
Change of Base:
Let a, b, and x be positive real numbers such that a≠1 and b≠1. Then logax can be converted to a different base using any of the following formulas.
Base b
logax=(logbx)/(logba)
Base 10
logax=(log10x)/(log10a)
Base e
logax = (ln x)/(ln a)
Examples:
log74 = .7124143742
log151460 = 2.690567447
log(1/3)(0.015)=3.822736302
Properties of Logarithms:
Let a be a positive number such that a≠1, and let n be a real number. If u and v are positive real numbers, the following properties are true.
1. loga(uv) = logau + logav
2. ln(uv) = ln u + ln v
3. loga (u/v) = logau - logav
4. ln (u/v) = ln u - ln v
5. logaun = n log au
6. ln un = n ln u
Examples: Expand or condense:
1. ln (x4 y½)/(y2z3) = 4ln x + 1/2 ln y - 2 ln y - 3 ln z = 4 ln x - 3/2 ln y - 3 ln z
2. ln (x4(x2+1))¼= (1/4)( 4 ln x + ln (x2 + 1))
3. 4(lnz + ln(z+5)) - 2ln(z-5) + 3ln(x-2) =