Wednesday, January 24, 2007

Precalculus 3.3 notes: Properties of Logarithms

3.3 Properties of Logarithms

Change of Base:
Let a, b, and x be positive real numbers such that a≠1 and b≠1. Then logax can be converted to a different base using any of the following formulas.

Base b

logax=(logbx)/(logba)

Base 10

logax=(log10x)/(log10a)

Base e

logax = (ln x)/(ln a)

Examples:

log74 = .7124143742
log151460 = 2.690567447

log(1/3)(0.015)=3.822736302

Properties of Logarithms:
Let a be a positive number such that a≠1, and let n be a real number. If u and v are positive real numbers, the following properties are true.

1. loga(uv) = logau + logav

2. ln(uv) = ln u + ln v

3. loga (u/v) = logau - logav

4. ln (u/v) = ln u - ln v

5. logaun = n log au

6. ln un = n ln u

Examples: Expand or condense:

1. ln (x4)/(y2z3) = 4ln x + 1/2 ln y - 2 ln y - 3 ln z = 4 ln x - 3/2 ln y - 3 ln z

2. ln (x4(x2+1))¼= (1/4)( 4 ln x + ln (x2 + 1))

3. 4(lnz + ln(z+5)) - 2ln(z-5) + 3ln(x-2) =