Double Angle
Example 1:
Given: tan θ = 3/4, find cos 2θ
tan θ = opp/adj so therefore using Pythagorean theorem,
we know the hypotenuse is 5, so cos θ = 4/5
cos 2θ = 2 cos2θ - 1 = 2 (4/5)2 - 1 = 2 (16/25) - 1 = .28 = 7/25
B. Solving a Multiple-Angle Equation
Example 2:
sin2x + cos x = 0
2 sin x cos x + cos x = 0
cos x (2 sin x + 1) = 0
Solving for x:
cos x = 0
x = π/2 , 3π/2
2 sin x + 1 = 0
sin x = - ½
x = 7π/6 and 11π/6
Therefore the general solution is
x = π/2 + π n and x = 7π/6 + π n
C. Power-Reducing Formulas
Power-Reducing/Half Angle Formulas
Example 3:
cos4 x = (cos2x)2
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh2XlpUhFEUjqwMB_1A5H34kqe1FJrCMkc4KFgs6f7wBSlG81pCbzHpJt2df8h7r8eVKu2768tV5rosaupigI1Cuf5B4q4IlNTH-A5Q5vWHssc08smwprBKXJc3F9oCY0m9sPMuvbPvzYw/s320/example+3.bmp)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjfAEakp9KMs6wct98KNegz1CkXBHnxUErdyK-y0t7KtCv7PbPph63uqYhf0UDRFZUmTxC_hI5d0skDTjURhZopgZC6YiAtVz_tDkm4O1ZCCwhMkYS_w32GOzNdsaZlWTpc8sdSXvAnwUs/s320/Half-angle+formulas.bmp)
Product-to-Sum Formulas
sin u sin v = ½ (cos (u - v) - cos (u + v))
cos u cos v = ½ (cos (u - v) + cos (u + v))
sin u cos v = ½ (sin (u + v) + sin (u - v))
cos u sin v = ½ (sin (u + v) - sin (u - v))
Sum-to-Product Formulas
check out this web-site for additional help:
http://wps.prenhall.com/esm_blitzer_algtrig_2/0,7303,911519-,00.html